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This paper treats the basics of thermoacoustic engines. The set of differential equations,

which describes the dynamics of the individual components, is condensed in a single

high-order differential equation which determines the time dependence of all dynamic

variables. From this relation analytical expressions are obtained for the damping

oscillations. Also transient effects are discussed based on numerical integration of the

dynamic equations.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

This paper treats the basics of thermoacoustic engines. The formalism that is presented here is general and can be
applied to a large variety of thermal engines. The basic idea is that the set of differential equations, which describes the
dynamics of the individual components, is condensed in a single high-order differential equation which is the heart of the
dynamics of the entire system. It determines the time dependence of all dynamic variables. The so-called travelling-wave
thermoacoustic Stirling engine, described in the paper by Backhaus and Swift [1], will be taken as the model system. This is
a very important type of thermoacoustic engine which is studied in many laboratories around the world. Fig. 1 is a
schematic drawing of this engine. It consists of a long resonator tube and a loop which contains a regenerator, several heat
exchangers, a compliance ðcÞ, a connecting tube ðdÞ, a pulse tube ðtÞ, and a section, with a smaller diameter, called the
inertance. One of the characteristic features of this engine is that the gas starts to oscillate back and forth in the machine
‘‘spontaneously’’ if the middle heat exchanger, with temperature Tt , is heated to a temperature which is sufficiently high
above ambient temperature Ta. This effect is the main topic of this paper.

After explaining the model, the various differential equations will be derived, taking the temperature Tt as a
fixed input parameter. This results in a single differential equation for the pressure pt in the pulse tube. It will turn
out to be a fourth-order differential equation with real constants. It will subsequently be solved analytically and its
properties will be discussed. Expressions for the damping coefficient and conditions for the onset and stability of
oscillations are derived as well as the relations for the oscillation frequency. In the second part of the paper the heating
power _Qt is fixed and Tt is treated as a slowly varying function of time. For this case the dynamic equations
are solved numerically. It reveals that the state of steady oscillations is reached after an interesting transient period
which may show bursts of high-amplitude oscillations. So far this effect has been poorly investigated experimentally. In the
state of steady oscillations the results of the analytical treatment and the numerical calculations are in excellent
agreement.
All rights reserved.
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Nomenclature

a notation (Eqs. (9), (38)–(41))
a; b; c; f ; k; l;m;n notations (Eqs. (58) and (59))
A area (m2)
c velocity of sound (m/s)
ci dimensionless parameters (Eq. (75))
C flow conductance (m3=Pa)
CH heat capacity of heat exchanger (J/K)
D diameter (m)
f volume rate of change (m3=s)

H
�

enthalpy flow rate (W)
L length (m)
M mass (kg)
p pressure (Pa)
_Q heating power (W)
s rate parameter (Eq. (42)) (s�2)
t time (s)
T temperature (K)
v velocity (m/s)
V volume (m3)
V
�

volume flow rate (m3=s)
w compliance factor (m3=Pa)
x position (m), dimensionless time
zr specific flow impedance (m�2)
z mathematical parameter

Zr geometrical flow impedance of the regenerator
(Eq. (27)) (m�3)

Greek symbols

a dimensionless damping parameter
g specific heat ratio
Z viscosity (sPa)
ka effective thermal conductivity (W/Km)
n frequency (Hz)
t dimensionless temperature
o angular frequency (rad/s)
ox dimensionless angular frequency

Subscripts

0 time average, characteristic
a ambient
ac acoustic
c critical
c; d; f ;R; t spaces in the system
e effective
o orifice
p (time) period
r regenerator, resonance
ref reference value
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2. Modeling

The dimensions of the components in the loop are all sufficiently smaller than the wavelength of the oscillations so it
can be modeled as in Fig. 2. The loop is decomposed in compartments c, t, and d (in which the pressures are homogeneous),
an inertance, and a regenerator. The inertance is supposed to behave as a solid piston with a mass Mi equal to the mass of
the gas contained in the inertance part. The orifice, together with the buffer volume b, represent a load. We assume that
there is dissipation only in the orifice and in the regenerator.

All volume flows in the loop can be determined from the local pressure and its time derivative except the volume flow
V
�

R. The resonator is so long that there are fundamental delays in it due to the finite velocity of sound. It is a challenge for
future analysis to model the resonator tube in acoustic terms. In this paper the resonator will be modeled as a cylinder with
volume VR (average length LR0 and cross sectional area AR) of a space R, closed at the right by a piston with mass MR. By
modeling the system in this way we really discuss a kind of free-piston Stirling engine. It is assumed that the pressure
Fig. 1. Schematic drawing the travelling-wave thermoacoustic Stirling engine. The symbols are explained in the text.
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Fig. 2. Schematic drawing of the thermoacoustic engine. Compared to Fig. 1 the resonator tube is replaced by a volume VR , closed by a piston with mass

MR . An orifice with flow conductance Co , backed by a buffer volume b (which is assumed to be very large), is included to take into account dissipation in

the system outside the regenerator.
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inside VR is only a function of time. The value of MR is taken equal to the mass of the gas in VR, so MR ¼ r0LR0AR with r0
the average density of the gas. The lower index 0 is used to indicate time-averaged values. The resonance frequency oR of
the mass-gas-spring system formed by MR and VR is

o2
R ¼

gp0

r0L2
R0

. (1)

The basic angular resonance frequency oac for an ‘‘open’’ tube (quarter wavelength), as in the case of Ref. [1], is given by

oacLac

c
¼

1

2
p (2)

with c the velocity of sound. If we take the average length LR0 of the cylinder in such a way that oR ¼ oac we have, using
r0c2 ¼ gp0,

LR0 ¼
2

p
Lac. (3)

3. Dynamic equations

3.1. Governing equations

The properties of the resonator get index R and of the inertance index i. The pressures in the spaces t, d, and R are all
equal to the pressure pt in the pulse tube t. The pressure in c is pc . The equation of motion of the mass of the inertance is

Mi
d2xi

dt2
¼ Aiðpt � pcÞ (4)

with xi the position of the mass Mi, counted positive in the upward direction. The volume of the space below Mi (space d) is
given by

Vd ¼ Vd0 þ Aixi. (5)

With Eq. (5) relation (4) can be written in terms of the volume Vd

d2Vd

dt2
¼

A2
i

Mi
pr , (6)

where we wrote pr for the pressure drop over the regenerator (and over the inertance)

pr ¼ pt � pc . (7)
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We will also use the notations

dpt ¼ pt � p0 (8)

and

aR ¼
A2

R

MR
and ai ¼

A2
i

Mi
(9)

for convenience.
The acceleration of the mass MR of the resonator is given by

MR
d2xR

dt2
¼ ARdpt . (10)

Since

VR ¼ VR0 þ ARxR (11)

we have

d2VR

dt2
¼ aRdpt . (12)

The volume flow through the orifice is given by

V
�

b ¼ Codpt , (13)

with Co the flow conductance of the orifice.
In Fig. 3 three situations are depicted: one where gas flows into and out of a control volume with volume V and pressure

pðtÞ, one where gas flows into a control volume with a moving piston, and one where gas flows out of a container through a
valve with flow conductance C. For these three situations we have three analogous relations. For the case of Fig. 3a

V
�

1 ¼ V
�

2 þ
V

gp

dp

dt
. (14)

The nice thing about Eq. (14) is that it holds for an adiabatic ideal gas in the container, even if the temperature is not
homogeneous. It holds, in particular, for the pulse tube where the temperature on one side is Tt and on the other side Ta.

For the case of Fig. 3b holds

V
�

1 ¼ vAþ
V

gp

dp

dt
(15)

and for the case of Fig. 3c

0 ¼ Cðp� p0Þ þ
V

gp

dp

dt
. (16)

In the analysis it will be assumed that the pressure variations are much smaller than the average pressure. In that case V=gp

can be replaced by their average values V0=gp0. Each of the spaces R, c, d, and t in the system of Fig. 2 can be characterized
by the parameters

wi ¼
gp0

Vi0
with i ¼ R; c; d; t. (17)
Fig. 3. Gas flows with varying pressure: (a) inlet and outlet; (b) inlet and piston; and (c) fixed volume with valve with flow conductance C.
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With Eqs. (14)–(16) we can express the various volume flows, as defined in Fig. 2. With Eq. (14), applied to the pulse
tube t,

V
�

h ¼ V
�

t þ
1

wt

dpt

dt
. (18)

With Eq. (15) and (5), applied to volume d,

V
�

d ¼
dVd

dt
þ

1

wd

dpt

dt
(19)

and, using Eq. (11) for R,

V
�

R ¼
dVR

dt
þ

1

wR

dpt

dt
(20)

and also for c

V
�

c ¼
dVd

dt
�

1

wc

dpc

dt
. (21)

Mass conservation gives

V
�

t ¼ V
�

b þ V
�

d þ V
�

R. (22)

For simplicity we assume that the void volume in the regenerator is zero (zero compliance). In that case mass
conservation over the regenerator gives

V
�

h ¼ ttV
�

c (23)

with the reduced hot-end temperature

tt ¼
Tt

Ta
. (24)

In a linear approximation the volume flow, entering the regenerator, is proportional to the pressure drop pR and can be
written as

V
�

c ¼ �Crpr . (25)

The flow conductance Cr is written as

Cr ¼
1

ZaZr
(26)

with Za the viscosity at room temperature and

Zr ¼
zrLr

Ar
, (27)

where zr is the specific flow resistance of the regenerator and Lr and Ar are the length and cross sectional area of the
regenerator, respectively. In general Cr depends on the temperature distribution, etc. in the regenerator. More elaborate
treatments of the regenerator can be found in Refs. [1,2]. For more detailed treatments numerical models can be used such
as Sage [3], Regen3.2 [4], or DeltaE [5].
3.2. One dynamic equation

In the previous section the dynamic equations are given for each of the components of the engine. In this section these
relations will be combined to the extreme, resulting in a single differential equation for one parameter (in fact dpt) which
determines the over-all dynamic behavior. The procedure is to eliminate subsequently all but one variable.

The volume flow V
�

h in Eq. (18) can be eliminated with Eq. (23)

ttV
�

c ¼ V
�

t þ
1

wt

ddpt

dt
(28)

and, with Eq. (25), V
�

c can be eliminated

ttCrðpc � ptÞ ¼ V
�

t þ
1

wt

ddpt

dt
. (29)
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Eqs. (13), (19), (20), and (29) in (22) give

ttCrpr þ vt
ddpt

dt
þ Codpt þ

dVd

dt
þ

1

wd

ddpt

dt
þ

dVR

dt
þ

1

wR

ddpt

dt
¼ 0. (30)

With the notation

we ¼
gp0

Vt þ Vd0 þ VR0
(31)

we get from Eq. (30)

�
ddpt

dt
¼ ttweCrpr þweCodpt þwe

dVd

dt
þwe

dVr

dt
. (32)

Eqs. (21), (25), and (7) give

Crpr ¼ �
dVd

dt
þ

1

wc

ddpt

dt
�

1

wc

dpR

dt
. (33)

With Eq. (32)

�
dpr

dt
¼ ðwc þweÞ

dVd

dt
þ ðttweCr þwcCrÞpr þweCodpt þwe

dVR

dt
. (34)

We eliminate VR and Vd by differentiating Eqs. (34) and (32) once. Substitution of Eq. (6) and (12) gives

�weCo
ddpt

dt
�weaRdpt ¼

d2pr

dt2
þ ðttwe þwcÞCr

dpr

dt
þ ðwc þweÞaipr (35)

and

d2dpt

dt2
þweCo

ddpt

dt
þweaRdpt ¼ �ttweCr

dpr

dt
�weaipr . (36)

Eqs. (35) and (36) form a set of two linear second-order differential equations with dpt and pr as variables. In Appendix A it
is shown that elimination of pr leads to a single homogeneous fourth-order differential equation in dpt

d4dpt

dt4
þ a3

d3dpt

dt3
þ a2

d2dpt

dt2
þ a1

ddpt

dt
þ a0dpt ¼ 0 (37)

with

a3 ¼ weCo þwcCr þ ttweCr , (38)

a2 ¼ aRwe þ aiwc þ aiwe þwcweCrCo, (39)

a1 ¼ wcweðCraR þ CoaiÞ, (40)

a0 ¼ wcweaRai. (41)

Note that all factors are positive and that only a3 depends on the dimensionless temperature tt .

3.3. Stable oscillations

Eq. (37) generally results in solutions which are oscillating in time. This is shown in more detail in Appendix A. The
function s, defined in Eq. (84) as

s ¼
a1

a3
þ a0

a3

a1
� a2, (42)

determines the growth or decay of oscillations. As shown in Appendix A the function s is proportional to the damping
coefficient a with a positive proportionality constant. If s40 the oscillations grow, if so0 the oscillations are damped. In
any case so0 if tt ¼ 1, so the oscillations are always damped in an isothermal system (as it should).

For steady oscillations s ¼ 0 so

0 ¼ a0
a3

a1

� �2

� a2
a3

a1
þ 1 (43)

or

a3

a1
¼

a2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

2 � 4a0

q
2a0

(44)
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and also (Eq. (86))

o2 ¼
a1

a3
. (45)

So the oscillation frequency is given by

n ¼ 1

2p

ffiffiffiffiffiffi
a1

a3

r
. (46)

In Eq. (44) only the solution with the minus sign gives a positive dimensionless temperature tt . Substitution of Eqs.
(38)–(41) in Eq. (44) gives the relation for the temperature Tc at which the oscillations are stable

Tc

Ta
¼ tc ¼

1

2we

1

ai
þ

Co

CraR

� �
ða2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

2 � 4a0

q
Þ �

Co

Cr
�

wc

we
. (47)

If the system is originally at room temperature and a sufficiently large heating power is applied, the oscillations start if the
temperature has reached the critical value of Tc . Therefore this temperature will be called the onset temperature.
Substituting tc in Eq. (38) and (45) gives the angular frequency of the oscillations.

Substituting Eqs. (39) and (41) in Eqs. (47) and (38) and (40) in Eq. (46) leads to rather complicated expressions which
show how the various system parameters affect the onset temperature and the oscillation frequency. If Co ¼ 0
(no dissipation outside the regenerator) tc is given by

tc ¼
a2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

2 � 4a0

q
� 2wcai

2weai
if Co ¼ 0. (48)

It is independent of the regenerator conductance Cr . This somewhat surprising result is due to the fact that, on one hand,
the flow in the regenerator gives dissipation, but, on the other hand, the pressure difference over the regenerator is the
driving force for the oscillations. In the limit of small we (or large VR0) and with Co ¼ 0 a second-order series expansion of
the numerator in we shows that the onset temperature is given by

Tc

Ta
¼ 1þ

weaR

wcai
(49)

and the corresponding frequency by

o2 ¼ weaR ¼ o2
eR. (50)

So, in this limiting case, the system oscillates at the resonance frequency of the resonator tube. With the values of Table 3
Eq. (49) would lead to values of tc close to one while in practice tc is more on the order of two. This shows that, in reality,
dissipation in the external circuit cannot be neglected (Coa0).
Table 1
Numerical values of the model system.

System parameter Symbol Value

Resonator diameter DR 0:102 m

Length ac resonator Lac 2 m

Regenerator diameter Dr 0:0889 m

Length of regenerator Lr 0.073 m

Specific impedance zr 3:6� 109 m�2

Length of pulse tube Lt 0.24 m

Diameter of pulse tube Dt 0.078 m

Average length of space d Ld0 0:209 m

Diameter of space d Dd 0.085 m

Length of inertance tube Li 0:256 m

Diameter of inertance tube Di 0:078 m

Average volume of space c Vc0 0:00283 m3

Ambient temperature Ta 300 K

Average pressure p0 3 MPa

Specific-heat ratio g 1.67

Viscosity at Ta Za 20ms Pa

Density r0 4:81 kg=m3

Conductance orifice Co 0:1Cr
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4. Some characteristic dependences

4.1. Input parameters

In this section some examples of calculated results will be given which show what can be done with the results obtained
so far. It is not the purpose of this section to give an exhaustive treatment of all implications of the formulae given above.
Unfortunately Ref. [1] does not give enough detailed information to make a quantitative comparison between the results,
derived in this paper, and the actual performance of the system. The numerical values of our model system are given in
Table 1. They are the same as the system described in Ref. [1].

4.2. Some plots

Next some plots are given for tc and the scaled oscillation frequency n=nref with nref ¼ oeR=2p. They are plotted as
functions of Co=Cr , Di, and Lac while the other system parameters have fixed values given in Table 1. In Fig. 4 the
conductance Co of the orifice is varied. We see that an onset temperature above ambient is necessary (tc41) even if Co ¼ 0.
Fig. 4. Onset reduced temperature tc and scaled oscillation frequency n=nref as functions of the relative orifice conductance.

Fig. 5. Onset reduced temperature tc and scaled oscillation frequency n=nref as functions of the inertance diameter Di.

Fig. 6. Onset reduced temperature tc and scaled oscillation frequency n=nref as functions of the resonator length Lac.
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For stable oscillations a higher temperature is needed if the orifice conductance is increased. The oscillation frequency does
not depend strongly on the orifice setting.

Fig. 5 is a plot with the inertance diameter Di as variable. This plot shows a clear minimum of tc for Di ¼ 4:5 cm. Fig. 6 is
a plot of the onset temperature and the reduced oscillation frequency as functions of Lac: In this case there is a clear
minimum of tc at Lac ¼ 0:2 m.

5. Transient behavior

So far Tt has been treated as an input parameter which is constant in time. We have seen that TtoTc corresponds with
ao0, so oscillations tend to die out. On the other hand Tt4Tc corresponds with a40. In this case the oscillations would
grow without limitation if Tt is fixed. Hence also the heat flow _Qt, needed to fix Tt , also would grow without limitation. It is
more realistic to fix the heat flow _Qt. This case will be considered in this section.

In the presence of an oscillating gas flow in the engine the temperature Tt oscillates with the same frequency. However,
at frequencies in the acoustic region, the amplitude of the oscillations in the temperature of the heat exchanger is very
small due to its high heat capacity Ch. If only slow temperature variations are considered, the energy balance of the heat
exchanger is given by

CH
dTt

dt
¼ _Qt �

_Qc � H
�

t . (51)

Here _Qt the applied heating power and _Qc the heat flow conducted to the surroundings. If the only path of the heat flow is
through the regenerator then

_Qc ¼ ka
Ar

Lr
ðTt � TaÞ (52)

with ka the effective thermal conductivity of the regenerator. The average enthalpy flow in the pulse tube is taken over one
oscillation period so we write

H
�

t ¼
1

tp

Z tþtp

t
V
�

hdpt dt, (53)

where tp ¼ 1=n is the time between two zero crossings of dpt with a positive slope. Defined in this way, the average
enthalpy flow is a short-time average which can vary slowly with time. The pressure amplitude p1 is defined as the
maximum value of dpt during the time span tp.

With

dVd

dt
¼ f d (54)

and

dVR

dt
¼ f r . (55)

Eqs. (6) and (12) result in

df d

dt
¼ aipr (56)

and

df R

dt
¼ aRdpt . (57)

Eqs. (32), (34), (56), and (57) form a complete set of four first-order differential equations. The general solution of such a set
is described in Ref. [6]. Here the set is solved numerically by second-order Runge–Kutta integration [7].

Fig. 7 gives the calculated time dependence of Tt and the amplitude of the pressure oscillations in the pulse tube p1.1

The value of the thermal conductance of the regenerator kaAr=Lr was set at 0.085 W/K. In order to speed up the effects the
heat capacity CH was given the rather low value of 0.21 J/K. For this system the onset temperature Tc ¼ tcTa ¼ 802 K. This is
represented by a horizontal line in Fig. 7. With a thermal conductance of 0.085 W/K a critical heating power of 43 W is

needed to maintain a temperature of 802 K. The applied heating power was _Qt ¼ 500 W, so far above the critical value.

With this heating power the equilibrium temperature without oscillations (so with H
�

t ¼ 0) would be as high as 6182 K, so
far above the onset temperature of 802 K.

Now let us have a look at Fig. 7. At t ¼ 0 the initial temperature Tt was set at 600 K and dpt was given a small kick of
50 hPa. As long as Tto802 K the temperature of the hot end is too low to sustain steady oscillations (ao0). The pressure
1 In this discussion we will only mention p1 as the amplitude of the oscillations, but it should be understood that the amplitudes of all other dynamic

parameters, such as the pressure drop over the regenerator and the various volume flows, vary in the same way.
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Fig. 8. Time dependences of Tt (full line) and p1 (dotted line) for a realistic CH . The horizontal line represents the critical temperature. The figure shows a

repetition of bursts of high-intensity sound interrupted by relatively long quiet periods.

Fig. 7. Time dependences of Tt (full line) and p1 (dotted line) for an artificially low CH. The horizontal line represents the critical temperature.
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oscillations, resulting from the kick at the start, tend to die out. This is visible between t ¼ 0 and 0:1 s. However, Tt increases
rapidly and after about 0.1 second Tt reaches Tc ¼ 802 K. From then on Tt4Tc and the amplitude of the oscillations grows
(a40). This is associated with a rapid increase of the sound intensity illustrated in Fig. 7 by an increase of p1. The frequency
n of the sound is about 103 Hz. Subsequently the hot end is cooled strongly by the oscillating gas flow (expressed in Eq. (51)
by a high value of the average enthalpy flow) and, after going through a maximum, Tt decreases. But the amplitude of the
sound keeps on growing as long as Tt4Tc . At the moment that the hot end has cooled to the onset temperature Tc the
intensity of the oscillations is at its maximum! So Tt continues to drop to values below Tc, initially with a slow decay but
later with a much stronger decay until the cooling of the hot heat exchanger by the oscillating gas becomes smaller than the
applied heating power. From that moment the temperature Tt starts to move up again.

This is repeated with decreasing excursions until a state of steady oscillations is reached at Tt ¼ 802 K. This value,
obtained from the numerical integration, corresponds with tc ¼ 2:67 which is in excellent agreement with the value
obtained from the analytical treatment (Eq. (47)). Also the numerically-obtained frequency n of 102.9 Hz is equal to the

value obtained by the analytical solution (45). In the steady state the enthalpy flow H
�

t ¼ 459 W and the heat flow by
conduction is _Qc ¼ 41 W.

The situation for Tt � Tc can be understood as follows: if TtoTc the oscillations are damped. Due to the applied heating
power the temperature rises. At the moment Tt passes Tc the oscillations grow according to expðatÞ, but a grows linearly in
time. So the oscillation amplitudes grow more than exponential. Setting t ¼ 0 at the moment that Tt ¼ Tc the oscillations
grow with expða0t2 dTt=dtÞ with a0 a positive constant.

The repetition rate of bursts of acoustic power (with a frequency of about 2 Hz in the example of Fig. 7) is determined by
the interplay between the heating power, the rate of the grow and decay of the amplitude of the high-frequency oscillations
(sound intensity), and the heat capacity Ch of the region around the hot heat exchanger. At values of the heating power just
above the critical value the repetition rate is small and increases with _Qt .

Fig. 8 represents the calculated variations of Tt and p1 as functions of time for the more realistic value of CH ¼ 21 J=K.
The applied heating power was 2 kW and the starting temperature 750 K, so not too far below the critical temperature. The
figure shows a repetition of bursts of very high intensity sound interrupted by relatively long quiet periods. Also in this case
we see transient effects with a certain time period which is, in this case, about 3 s. The oscillation amplitudes of the
pressure are strong functions of time and, in this example, can vary over an order of magnitude.
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It is interesting to note that, under the conditions in this paper, the value of Tc is determined only by the geometry of the

machine and not by the heating power _Qt. Consequently, in the steady state, also the heat flow _Qc is independent of _Qt .

Only the oscillation amplitude p1 is affected by _Qt and, consequently, the average enthalpy flow H
�

t. During the transient
period, at the peak values of the p1-oscillations, the energy flows are very high (in the example of Fig. 8 more than 12 kW),
so large radial temperature gradients will be present heat exchanger. This will affect the dynamics of the behavior. Also the
assumptions of linearity of the relations will not be valid at high amplitudes. It is an interesting situation that the onset of
the oscillations is determined by the values of, e.g. CR and Co for small amplitudes, but that the effective values of these
system parameters may differ for oscillations with high amplitudes.

The transient behavior, reported in this section, has been observed experimentally [9]. Penelet et al. have reported
effects that strongly resemble the pulsating oscillations described here [10]. Penelet et al. conclude that their model does
not reproduce the experimental results very well. They argue that the most critical assumption in the model is the one-
dimensional approach in the description of the heat transfer. It would be interesting to reanalyze their system in terms of
the model presented in this paper. Yu et al. used CFD software to calculate the transient behavior in their machine for two
conditions: one with fixed heat input (case A) and one with fixed hot-end temperature (case B) [11]. Case A corresponds
with the numerical approach in this paper (Section 5). They find an overshoot of the pressure amplitude before it tends to a
state of steady oscillations. This is resembles the results found here. Case B of Yu et al. corresponds with the analytical
treatment of this paper. In the treatment, given in Section 4, the amplitude would grow without limitation once the critical
temperature is passed. This is in contrast with the findings of Yu et al. The reason is most probably that the dissipation
strongly increases at high amplitudes, e.g. due to vortex production. This is favored by the geometry chosen by Yu et al.
where the gas is forced to make a 180� angle. This kind of effects is not taken into account in this paper (although is can be
incorporated in Co). Furthermore heat exchange may become problematic if the gas oscillates with high amplitude so the
condition of constant temperature is not satisfied. The combination of these effects would also explain that there is only a
single small overshoot in Case A.

6. Discussion

In this paper the basic features of thermoacoustic engines are treated with the travelling-wave thermoacoustic heat
engine as a working model. If the hot-end temperature is assumed to be constant the dynamics of the system is described
by a fourth-order differential equation which determines damping, growth, or stability of oscillations. For the case that the
hot-end temperature is allowed to vary in time the dynamic relations are integrated numerically. Interesting transient
effects are seen in which the amplitude of the oscillations is pulsating. Eventually a steady state is reached in which the
amplitudes of the oscillations are stable. The results of the numerical integration for the steady state agree very well with
the analytical relations.
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Appendix A. Derivations

Eqs. (35) and (36) with the following identifications:

a ¼ ðttwe þwcÞCr ; b ¼ ðwc þweÞai; c ¼ �weCo; f ¼ �aRwe, (58)

k ¼ weCo; l ¼ aRwe; m ¼ �ttweCr ; n ¼ �aiwe (59)

become

d2pr

dt2
þ a

dpr

dt
þ bpr ¼ c

ddpt

dt
þ fdpt (60)

and

d2dpt

dt2
þ k

ddpt

dt
þ ldpt ¼ m

dpr

dt
þ npr . (61)

Multiplying Eq. (61) with the operator

Oa ¼
d2

dt2
þ a

d

dt
þ b (62)
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gives

d2

dt2
þ a

d

dt
þ b

 !
d2dpt

dt2
þ k

ddpt

dt
þ ldpt

 !
¼

d2

dt2
þ a

d

dt
þ b

 !
m

dpr

dt
þ npr

� �
(63)

or

d2

dt2
þ a

d

dt
þ b

 !
d2dpt

dt2
þ k

ddpt

dt
þ ldpt

 !
¼ m

d

dt
þ n

� �
d2pr

dt2
þ a

dpr

dt
þ bpr

 !
. (64)

With Eq. (60)

d2

dt2
þ a

d

dt
þ b

 !
d2dpt

dt2
þ k

ddpt

dt
þ ldpt

 !
¼ m

d

dt
þ n

� �
c

ddpt

dt
þ fdpt

� �
. (65)

Expanding this relation and collecting terms gives

0 ¼
d4dpt

dt4
þ a3

d3dpt

dt3
þ a2

d2dpt

dt2
þ a1

ddpt

dt
þ a0dpt (66)

with

a3 ¼ kþ a, (67)

a2 ¼ lþ ak� cmþ b, (68)

a1 ¼ al� fm� cnþ bk, (69)

a0 ¼ bl� fn. (70)

If we would eliminate dpt instead of pR we would have obtained the same differential equation but now in pR. This reflects
the fact that the stability condition for all dynamic variables is the same.

We write Eq. (66) as

0 ¼
d4dpt

a0dt4
þ

a3

a0

d3dpt

dt3
þ

a2

a0

d2dpt

dt2
þ

a1

a0

ddpt

dt
þ dpt . (71)

This suggests a characteristic frequency

o0 ¼ a
1=4
0 . (72)

We introduce the dimensionless time x according to

x ¼ o0t (73)

then Eq. (71) reduces to

0 ¼
d4dpt

dx4
þ c3

d3dpt

dx3
þ c2

d2dpt

dx2
þ c1

ddpt

dx
þ dpt (74)

with

c3 ¼
a3

o0
; c2 ¼

a2

o2
0

; c1 ¼
a1

o3
0

. (75)

Note that all coefficients in Eq. (74) are real and positive. The solution of Eq. (74) is of the form [7]

dpt ¼
X4

k¼1

Ck expðzkxÞ, (76)

where the zk are the roots of the characteristic equation

0 ¼ z4 þ c3z3 þ c2z2 þ c1zþ 1. (77)

Eq. (76) is the general solution of the time dependence of dpt for constant tt . It contains not only eventual oscillatory
solutions, but also all transient effects such as the transition to a steady state after an arbitrary starting condition. Eventual
oscillatory solutions are not a prerequisite of our treatment, but rather the result.

Eq. (77) can be solved analytically [8]. If one root is complex its complex conjugate is also a root since the coefficients c1,
c2, and c3 are real. In that case the linearly independent solutions are

eax cosoxx and eax sinoxx. (78)

The index x in ox is used to indicate that ox is the angular frequency expressed in the dimensionless time x.
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We substitute

z ¼ aþ iox (79)

in Eq. (77). We are interested in the onset of oscillations, so we can limit the discussion to low values of a. To first order in a
Eq. (77) gives

0 ¼ �4iao3
x � 3c3ao2

x þ 2ic2aox þ c1aþo4
x � ic3o3

x � c2o2
x þ ic1ox þ 1. (80)

The real part of Eq. (80) results in

0 ¼ o4
x � ð3c3aþ c2Þo2

x þ c1aþ 1 (81)

and the imaginary part in

o2
x ¼

c1

c3
þ a 2

c2

c3
� 4

c1

c2
3

 !
. (82)

Substituting Eq. (82) in (81) gives, with Eq. (75), to lowest order in a,

a ¼ 1

2

c1c2
3

c1c3
3 þ ð2c1 � c2c3Þ

2

1

a
1=2
0

a1

a3
þ a0

a3

a1
� a2

� �
. (83)

As the prefactor is positive the sign of a is determined by the sign of the function

s ¼
a1

a3
þ a0

a3

a1
� a2. (84)

If so0 the oscillations are damped. If s40 the oscillation amplitude is growing.
For steady oscillations s ¼ 0. In this case Eq. (82) gives

o2
x ¼

c1

c3
. (85)

The real-time angular frequency is given by

o2 ¼ o2
0o

2
x ¼

a1

a3
. (86)

With a ¼ 0 Eqs. (81) and (82) give

c2 ¼
c1

c3
þ

c3

c1
. (87)

Substitution of Eq. (87) in Eq. (77) reads

0 ¼ z4 þ c3z3 þ
c1

c3
þ

c3

c1

� �
z2 þ c1zþ 1. (88)

Eq. (88) can be written as

0 ¼ z2 þ
c1

c3

� �
z2 þ c3zþ

c3

c1

� �
. (89)

The first factor gives the two roots

z1;2 ¼ �i

ffiffiffiffiffi
c1

c3

r
(90)

which we know from Eq. (85). The second set of roots z3;4 is given by

z3;4 ¼
1

2
�c3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

3 �
4c3

c1

s !
. (91)

As c340 the second set of solutions z3;4 corresponds with damped oscillations. So there is only one steady oscillation
possible. The property differs from real thermoacoustic systems where higher harmonics are possible. This can be
mimicked in our model by choosing different values for the parameter aR.

Table 2 gives the calculated coefficients in the characteristic equations of the model system. The fact that the
dimensionless parameters c1, c2, and c3 are of order 1 is an indication that they are good dimensionless parameters to
characterize the basic properties of the system.
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Table 3
Characteristic frequencies for the model system defined in Table 1.

Symbol Expression Value (Hz)

nCcr wcCR=2p 332

nCer weCR=2p 73.8

nCeo weCo=2p 7.38

neR
ffiffiffiffiffiffiffiffiffiffiffiffi
aRwe
p

=2p 115

nci
ffiffiffiffiffiffiffiffiffiffi
aiwc
p

=2p 417

nei
ffiffiffiffiffiffiffiffiffiffiffi
aiwe
p

=2p 196

n Eq. (47) 102.92

Table 2
Coefficients in the characteristic equations of the model system.

Symbol Expression Value Symbol Value

a0 71 3:59� 1012 s�4 c0 1

a1 70 1:41� 109 s�3 c1 0.54

a2 69 8:99� 106 s�2 c2 4.75

a3 68 3:37� 103 s�1 c3 2.45
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Appendix B. Characteristic frequencies

The combination of the compliance volume Vc and the regenerator conductance Cr , the volume Ve and Cr , and Ve and
the orifice conductance Co are all examples of case c of Fig. 2. The rate of change of the pressure in the vessel is determined
by three characteristic frequencies

oCcr ¼ wcCr , (92)

oCer ¼ weCr , (93)

oCeo ¼ weCo. (94)

The product weaR

o2
eR ¼ aRwe ¼ aR

gp0

Ve
(95)

is the square of the angular resonance frequency of the mass of the piston and the gas-spring action due to the volume Ve.
Similarly

o2
ci ¼ aiwc , (96)

o2
ei ¼ aiwe (97)

are the resonance frequencies of the mass-spring systems formed by the inertance and the compliance and the inertance
and Ve, respectively. Table 3 gives the values of the various frequencies for the model system.

With these frequencies Eqs. (35) and (36) become

d2pr

dt2
þ ðttoCer þoCcrÞ

dpr

dt
þ ðo2

ci þo
2
eiÞpr ¼ �oCeo

ddpt

dt
�o2

eRdpt (98)

and

d2dpt

dt2
þoCeo

ddpt

dt
þo2

eRdpt ¼ �ttoCer
dpr

dt
�o2

eipr . (99)

The treatment in this paper could be completely formulated in terms of the characteristic frequencies, but the relations are
easier to recognize if they are expressed in terms of the conductances Cr and Co, the masses Mi and MR, etc. which makes
the paper easier to read.
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